

UNIVERSITÀ DEGLI STUDI DI MILANO Facoltà di farmacia

Studies on potential Stat-3 inhibitors: reactivity and behaviour of furazan derivatives

Masciocchi Daniela ^a, Villa Stefania ^a, <u>Gelain Arianna</u> ^a, Meneghetti Fiorella ^a, Pedretti Alessandro ^a, Barlocco Daniela ^a, Kwon Byoung-Mog ^b

^a Dipartimento di Scienze Farmaceutiche "Pietro Pratesi", Facoltà di Farmacia, Università degli Studi di Milano, via L. Mangiagalli 25, 20133 Milano, Italy

^b Department of BioMolecular Science, Korea Research Institute of Bioscience & Biothecnology, 52 Uen-Dong Yusung-Ku, Daejeon 305-600, South Korea

arianna.gelain@unimi.it

Introduction

Signal transduction and activator for transcription factor 3 (Stat-3) is a latent cytosolic protein member of Stat family. It is a transcription factor that transmits cytoplasmic signals (e.g. from growth factors, poly-peptide cytokines etc.) to the nucleous¹. The mechanism of activation provides the recruitment of Stats to phosphorylated receptors via their SH2 domain and Stat-3 dimerization (**Figure 1**). Stat-3 is involved in cell growth and survival but Stat-3 signalling may contribute to malignancy by preventing apoptosis even if the molecular mechanism of oncogenesis by Stat-3 must be clearly defined. Stat-3 is constitutively activated by aberrant upstream tyrosine kinase activities in a broad spectrum of human solid and blood tumours. Numerous published reports have shown that blocking constitutively activated Stat-3 signalling leads to apoptosis of tumour cells²⁻⁴ but does not affect normal cells⁵⁻⁶ suggesting that its inhibition could be a leading target for cancer theraphy.

Figure 1. Stat-3 homodimer-DNA complex

Bromberg J. et all. Oncogene, 2000, 19, 2468-2473

Objectives

Our preliminary studies were focused on the discovery of new small molecules as potential Stat-3 inhibitors, with the aim of identifying the essential requirements for the development of novel lead compounds. On this basis we decided to explore the reactivity of a relatively little studied heterocycle, the furazan (1,2,5-oxadiazole) ring and we planned to synthesize a new series of compounds (**1a-e**, **2a-c**, **3a-c**) with the following general formula:

 $R = CH_3$, CH_2OH , $COOCH_3$, C_6H_5

 $X = NHCO, NHSO_2, NHCONH$

In more detail the 4-substituted derivatives could be branched in three main classes: ureas (**1a-e**), amides (**2a-c**) and sulfonamides (**3a-c**) and were synthesized by the reported procedures (**Scheme 1**).

Chemistry

Scheme 1. Synthesis of ureas 1a-e, amides 2a-c and sulfonamides 3a-c

Reagents and conditions: *a*) $Ph(CH_2)_nNCO$, toluene, MW; *b*) $Ph-CH_2COCl$, $NaHCO_3$, r.t. or $Ph-CH_2-COCl$, pyridine, toluene/diethyl ether, r.t.; *c*) $Ph-CH_2-SO_2Cl$, Py, r.t.; *d*) 1% K_2CO_3 methanol, r.t.

All products were synthesized starting from the suitable key intermediate **4** or **5**. Compounds **4a**⁷, **4b**⁸, **4d**⁹ were prepared as reported in literature, while **4c** was obtained by reduction of **4b** with LiAlH₄.

Results of biological tests

Compd	n	R	X	% Inhibition (5 μM)
1 a	-	CH ₃	NHCONH	10.48
1b	-	COOCH ₃	NHCONH	-16.44
1c	-	C_6H_5	NHCONH	25.71
1d	1	CH ₂ OH	NHCONH	17.36
1e	1	C_6H_5	NHCONH	29.38
2a	1	CH ₂ OH	NHCO	6.51

Compd	n	R	X	% Inhibition (5 μM)
2b	1	COOCH ₃	NHCO	25.77
2c	1	C_6H_5	NHCO	21.94
3a	1	CH ₂ OH	NHSO ₂	-0.78
3b	1	COOCH ₃	NHSO ₂	-5.64
3c	1	C_6H_5	NHSO ₂	14.15
AVS 0288		-	-	81.79

The inhibitory activity against Stat-3 was evaluated by a modified procedure of dualluciferase assay¹⁰ in human colorectal carcinoma cells (HCT-116), characterized by uncontrolled expression of Stat-3.

The activity was expressed as % of inhibition, after 24 h treatment with the tested compounds and **AVS 0288**¹¹, that was used as reference.

Crystallography

AVS 0288 and **1d** were solved by direct – methods¹² and conventional Fourier synthesis.¹³ – The refinement of the structures was made by full matrix least-squares on F². All non-H-atoms were refined anisotropically and were introduced _ at calculated positions, in their described geometries and allowed to ride on the attached [–] carbon atom with fixed isotropic thermal [–] parameters (1.2Ueq of the parent carbon atom).

Crystal system	Monoclinic	Monoclinic
Space group	P 2 ₁ /a	P 2 ₁ /n
Cell dimensions (Å)(°)	a=9.065(3 b=14.592(3) c=12.410(3) β=99.248(9)	a=8.135(5) b=12.855(5) c=11.815(5) β=109.13(1)
Volume (Å ³)	1620.1(7)	1104(1)
Z	4	4
Final R indices [I>2o(I)]	R1= 0.049, wR2= 0.170	R1= 0.074, wR2= 0.195

The crystal structure of **AVS 0288** is characterized by the CI-phenyl moiety almost coplanar to the furazane, which is inclined with respect to the CF₃-phyenyl group by a dihedral angle of $13(1)^{\circ}$. **1d** has three moieties nearly planar, the furazane (P1), the urea group (P2) and the phenyl ring (P3), oriented at dihedral angles of $130(1)^{\circ}$, $62(1)^{\circ}$ and $57(1)^{\circ}$ between P1/P2, P2/P3 and P1/P3 respectively. In **1d** the two amide bonds have a *cis/trans* conformation, differently with respect to the *trans* orientation of **AVS 0288**. The crystal packing of both molecules present a three-dimentional network of intermolecular interaction of type N-H...N, N-H...O, C π -H...n, and π - π stacking interaction.

Table 1. Summary of the crystal data and refinement

Molecular modeling

The Stat-3 structure, co-crystallized with a DNA fragment¹⁴, was downloaded from the Protein Data Bank¹⁵ (PDB-ID 1BG1) and was optimized by NAMD¹⁶ (30.000 steps, conjugate gradients). All considered compounds were built by VEGA ZZ¹⁷ and docked to Stat-3 by GriDock¹⁸, selecting the SH2 domain as target region.

Product **1c**, most directly related to the reference compound, interacts with Stat-3 by a strong H-bond network (**Figure 5**). The binding mode can be compared to the complex with **AVS 0288** as shown in **Figure 6**, in which the ligands are placed in the positively charged pocket occupied by the phosphorylated tyrosine 705 when Stat-3 is dimerized.

Conclusions

We decided to perform crystallographic and molecular modeling studies with the aim of understanding the biological data obtained. Due to limited space, we presented only several data: we verified and explained that the lack of substituents on the phenyl rings (**1c**) such as the presence of a polar group linked to the furazan ring (**1d**) were not favourable for the activity.

The substitution of a ureidic bond (**1e**) by amidic function (**2c**) kept the % of inhibition unchanged while the sulfonamidic derivatives (**3c**) lost the interaction with Stat-3. Although the results of our preliminary research were not satisfactory, just a few compounds (**1c**, **1e**, **2b** and **2c**) showed a slight interaction with Stat-3, they allowed us to obtain several indications useful to develop new derivatives.

References

- 1. Costantino L. et al. Curr. Med. Chem., 2008, 15(9), 834-843
- 2. Bowman, T. et al. Oncog., 2000, 19(21), 2474-2488
- 3. Buettner R. et al. Clin. Canc. Res., 2002, 8, 945-954
- 4. Nefedova, Y. et al. J. Immunol. , 2004, 172(1), 464-474
- 5. Bowman, T. et al. *Proceedings of the National Academy of Sciences of the United States of America?*, **2001**, 98(13), 7319-7324
- 6. Turkson, J. et al. *The J. Biol. Chem.*, **2001**, *276*(48), 45443-45455
- 7. Sheremetev A.B. et al. Russ.Chem.Bull., Int.Ed , 2005, 54(4), 1032-1037
- 8. Sheremetev A.B. et al. J.Het.Chem., 2005, 42, 519-
- 9. Sheremetev A.B. et al. Russ.Chem.Bull., Int.Ed., 2005, 54(4), 1057-1059
- 10. Sherf, B.A. et al. Promega Notes Mag., 1996, 57, 2-8
- 11. Kwon, B-M et al. US 2008/00514442 A1.(Feb. 28, 2008)
- 12. G.M. Sheldrick, Program for refinement of crystal structure. University Göttingen, Germany, **1997**.
- 13. SIR-92: Altomare, A. et al. J. Appl. Crystallogr., **1994**, 27, 435.
- 14. Becker S. et al. Nature, **1998**, 934 (6689), 145-51
- 15. http://www.pdb.org/
- 16. Phillips J.C. et al. J. of Comp. Chem., 2005, 26, 1781-1802
- 17. Pedretti A. et al. J. Mol. Graph., 2002, 21, 47-49
- 18. http://www.ddl.unimi.it/